

Analysis Of the Relationship Between Big Data and Smart Governance in The Context of Achieving Sustainable Governance

Muhammad Tegar Satriatama¹, Achmad Nurmandi², Hardianti³, Herman Lawelai⁴, Aulia Nur Kasiwi⁵

^{1,3} Department of Public Administration, Universitas Muhammadiyah Sidenreng Rappang, Indonesia

^{2,5} Department of Government Affairs and Administration, Jusuf Kalla School of Government, Universitas Muhammadiyah Yogyakarta, Indonesia

⁴ Department of Government Studies, University of Muhammadiyah Buton, Indonesia

Corresponding Author: Muhammadtgr13@gmail.com

DOI: <https://doi.org/10.47431/jirreg.v9i2.674>

Article Info

Article History;

Received:

2025-09-25

Revised:

2025-10-02

Accepted:

2025-12-01

Abstract: *Big Data and Smart Governance are important components in achieving sustainable governance. This article explores the integration of Big Data in public administration and its role in improving government efficiency, transparency, and accountability through data-driven decision-making. While Big Data offers great opportunities, governments face a variety of challenges, including data privacy, security, and technology infrastructure issues. This article identifies these challenges and highlights the potential of Smart Governance in supporting sustainable development by leveraging technology to achieve environmental, economic, and social goals. Through a comprehensive analysis, this study presents policy recommendations to help governments and stakeholders make optimal use of Big Data in supporting more effective and sustainable governance. These findings highlight the long-term benefits of integrating Big Data in public administration to ensure equitable and sustainable development.*

Keyword: *Big Data, Smart Governance, Governance, Data-Driven Decision Making, Sustainable Development, Data Privacy, Data Security, Technology Infrastructure*

INTRODUCTION

Big Data refers to enormous volumes of data, which include not only structured data but also ever-evolving unstructured data from various sources such as social media, sensor devices, online transactions, and more (1). The development of Big Data is made possible by advances in advanced computing, data storage, and analysis technologies that can process large amounts of information at high speeds (1). Initially, Big Data was used primarily in business and industry, but it has now expanded to the public sector, where governments use Big Data to improve efficiency, transparency, and effectiveness in public services (2). Smart Governance is a concept that utilizes information and communication technology (ICT) to create a government that is more open, participatory, and responsive to the needs of the community (3). In this context, Big Data is becoming an important tool, as it helps governments collect and analyze data in real-time, allowing for more informed and evidence-based decision-making (4). Sensor-based big data applications are shaping the development of smart and environmentally sustainable cities. This article presents an empirical study conducted to evaluate and analyze urban big data analytics as well as sustainable governance networks in integrated smart city planning and management. (5)

Information and communication technology (ICT) has revolutionized the way governments operate in various fields. Through digital platforms and data-driven systems, the government can now provide easier and faster access to public information (6). This increases transparency in financial management, public services, and supervision by the community(7). By using Big Data, governments

can make more informed decisions as real-time and accurate data is available (8). For example, transportation data can be used to manage traffic, or health data to respond quickly to outbreaks (9). Public services can now be automated and personalized through the use of data. Smart city management systems, such as water, electricity, and transportation management, can be optimized with Big Data to improve efficiency and reduce costs (3). Through digital platforms and social media, the public can more easily be involved in the public decision-making process. Governments can use Big Data from social media to understand people's needs and respond more quickly to emerging issues (10).

With the advent of big data and the ability to collect vast amounts of data about people, data sources ranging from fingerprints to typing patterns can build a person's identification profile (11). Smart Data Governance focuses on how data is collected, managed, analyzed, and shared in a secure and efficient manner (12). This is critical to achieving sustainability in governance because: Well-analyzed data helps governments allocate resources more efficiently, avoid waste, and ensure that people's needs are met appropriately (13). With accurate data, the government can make policies that support sustainable development (14). This includes environmental monitoring, energy management, and environmentally friendly urban planning (15). Big data allows governments to better predict and manage risks, whether it's the risk of natural disasters, economic crises, or social problems (1). With predictive analytics, the government can design more adaptive policies (11). The implementation of Smart Governance requires the protection of public data involving security and privacy issues (12). Good data governance ensures that personal data is managed ethically and in accordance with existing regulations (16). The implementation of Data and Smart Governance provides opportunities for governments to operate more effectively, transparently, and inclusively, and contribute to sustainable development goals (17).

The most important problem is the fact that the Government faces various challenges in managing Big Data and forming smart governance (6). These challenges arise from technological complexity, regulatory issues, to social and ethical aspects (18). Here are some of the key challenges: Governments must protect the data collected from cyber threats such as hacking, malware, and DDoS attacks (13). Because Big Data involves such large and sensitive information, the risk of security breaches increases. Another big challenge is maintaining the privacy of citizens' data (19). The government manages a lot of personal information such as health, financial, and demographic data. The use of this data requires a strict privacy policy so as not to violate the rights of individuals. This issue is particularly relevant in the context of data protection regulations such as GDPR in Europe (20). Not all countries, especially developing countries, have adequate technological infrastructure to manage and process Big Data (21). The servers, networks, data storage, and security systems required to support Big Data are often expensive and complex to implement (13).

This seems to be a common problem in the contemporary digital age prompting the need for a reassessment of urban planning principles and practices. In the context of today's data-rich urban planning, this study seeks to answer the question of whether an appropriate methodological basis can be provided for smart city governance based on a data-driven planning perspective (22). The government's use of Big Data can trigger concerns among the public regarding the potential for data misuse (23). There are concerns that the data will be used to monitor or control citizens, especially in countries with poor human rights records. In some cases, government agencies may resist changes due to discomfort with new technologies or fear of a shift in power (12).

These examples highlight the problem that reforms in data governance often require slow changes in bureaucratic culture. The implementation of Big Data-based Smart Governance requires a large investment in technology, training, and infrastructure. In developing countries, this financing constraint is a major problem due to budget constraints (3). While Big Data programs can be initiated, ensuring they are sustainable in the long term is another challenge, especially when there are political changes

or budget cuts. There is the potential for unethical use of Big Data, such as algorithmic discrimination, where the algorithms used to manage data actually reinforce social injustice or bias. Governments need to develop an ethical framework to ensure responsible use of data (3). Governments need to address these challenges to ensure that Big Data and Smart Governance can be implemented effectively and equitably. A holistic approach, including strengthening regulations, technology investment, and capacity building, is critical for this transformation to go well.

The purpose of this article is to examine the relationship between Big Data and Smart Governance in the context of sustainable governance, with a specific focus on key issues related to the utilization of Big Data. This study aims to analyze how Big Data can enhance government efficiency, transparency, and accountability through data-driven decision-making; identify the main challenges in managing Big Data, particularly those concerning privacy, security, and technological infrastructure; and highlight the potential contributions of Smart Governance in supporting sustainable development goals in the environmental, economic, and social dimensions. Furthermore, this article seeks to provide policy recommendations that enable governments and stakeholders to optimize the use of Big Data for more effective, adaptive, and sustainable governance. By concentrating on these core issues, the article is expected to offer a focused insight into the integration of Big Data technologies in governance and its long-term implications for equitable and sustainable development.

LITERATURE REVIEW

Big Data in Government

Big Data is a term that refers to a very large volume of data, with high variety and speed, so it requires special technology to manage and analyze it (24). In the government sector, Big Data enables more efficient and sustainable data management by utilizing advanced analytics technologies such as machine learning, data mining, and artificial intelligence (AI). The use of Big Data in government serves to support a decision-making process that is more data-based, responsive, and predictive to people's needs (19). This technology has been proven to improve public services by enabling governments to identify trends, make timely decisions, and optimize the use of resources (9).

Smart Governance

Smart Governance is a governance concept that integrates information and communication technology (ICT) in administrative processes, public services, and policymaking (25). Smart governance aims to create efficiency, increase transparency, and strengthen citizen participation through digital platforms (6). This concept also emphasizes the importance of collaboration between sectors, be it between the government, the private sector, or the community. With the adoption of Smart Governance, governments can respond faster to social, economic, and environmental problems by using real-time data from various sources (26).

The Contribution of Big Data to Smart Governance

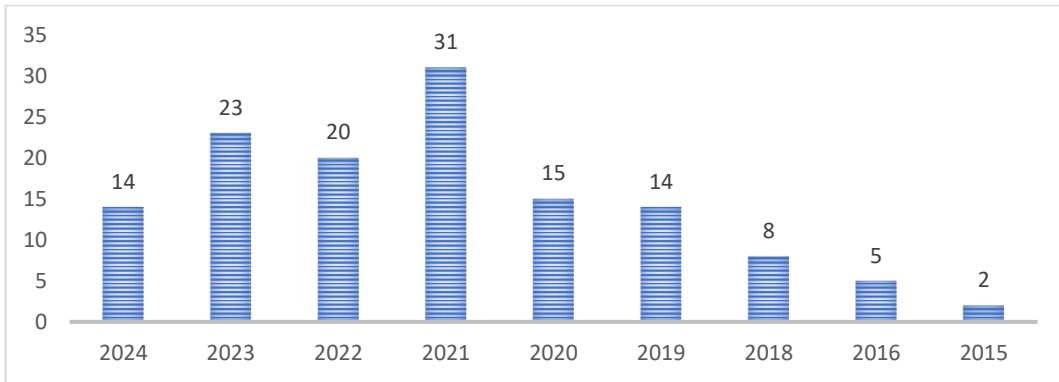
Big Data plays a key role in realizing Smart Governance. Effective data management enables governments to increase transparency through open access to public information, as well as strengthen accountability with more accurate reporting (24). Data collected from various sources, such as IoT sensors, social media platforms, and public transaction data, can be processed and analyzed to provide in-depth insights into people's needs, behavioral patterns, and the effectiveness of public policies (27). Big Data analysis also helps the government in formulating policies that are more appropriate and adaptive to rapid changes in society (28).

Implementation of Big Data and Smart Governance in Various Countries

Various countries have started to implement Big Data and Smart Governance to improve the efficiency of governance. Singapore, for example, has used Big Data technology to monitor traffic density, energy consumption, as well as to respond to social problems in real-time (26). Meanwhile, South Korea is adopting Big Data to support environmentally friendly and sustainable smart cities, especially in waste and energy management (29). In the European region, Estonia has been a pioneer in e-Government, using data technology to provide transparent access to digital public services for its citizens (13).

Challenges in the Implementation of Big Data and Smart Governance

Although the potential of Big Data and Smart Governance in improving governance is enormous, there are several challenges that must be overcome. One of them is the issue of data security and privacy. The use of Big Data requires strict regulations to protect sensitive information and ensure that citizens' personal data is not misused (30). In addition, many developing countries face challenges in terms of technological infrastructure and skilled human resources in managing and analyzing data (31). Data complexity and limited technical capacity are also obstacles in optimizing the potential of Big Data in government.

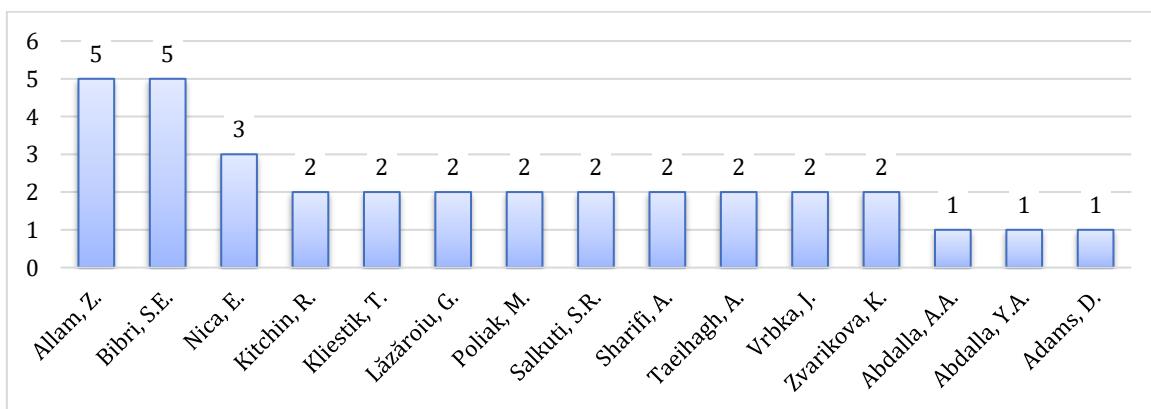

RESEARCH METHOD

This study uses a bibliometric method to analyze the literature related to Big Data and Smart Governance. The data was collected from the Scopus database using the keywords "Big Data" and "Smart Governance". The data collection process consisted of 656 documents focused on journal articles (document type: article/journal) with a total of 250 documents. This research was limited to 220 documents in English and was selected from the period 2015 to 2024, with a total of 218 documents corresponding to that time range. In addition, of the number of documents, 132 of them are open access articles. The data that has been collected is then filtered to ensure that only articles relevant to the main keywords are used in the analysis.

Once the data is collected, the next step is to perform a bibliometric analysis with the help of the VOSviewer software. VOSviewer is used to visualize the relationships between keywords, collaboration between authors, as well as the network of citations between these documents. The resulting visualization includes mapping keywords based on their occurrence (co-occurrence), as well as a collaboration network between researchers and institutions. Data from Scopus is exported in CSV or RIS format, then imported into VOSviewer to map research trends, collaboration between authors, and citation relationships between selected articles.

The results of this visualization provide insight into research trends and emerging focus areas in the field of Big Data and Smart Governance. In addition, the visualization also shows the key authors and institutions that are most influential in this topic. Based on this analysis, the research can provide a comprehensive overview of the development of the topics discussed and provide recommendations for further research, especially in areas that are still underexplored. The conclusions drawn also include the potential for collaboration between researchers to strengthen research in this area.

RESULT AND DISCUSSION

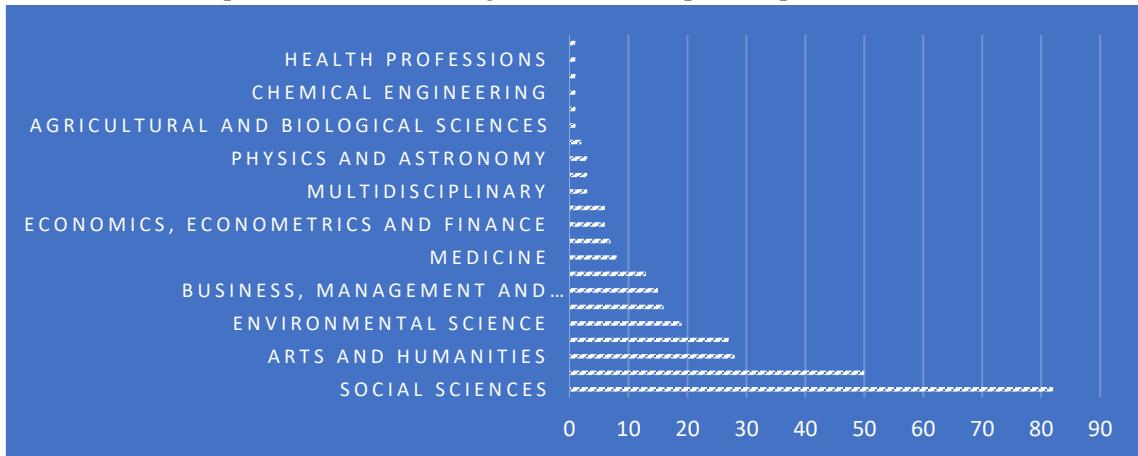


Source: Scopus Database, 2024

Gambar 1. Documents by years

Figure 1 shows the distribution of the number of documents published per year in Scopus related to the topic of Big Data and Smart Governance in the period 2015 to 2024. At the beginning of the period, the number of documents published was relatively low, with only about 2 documents in 2015 and a small increase in 2016 to 5 documents. However, in 2017 there was a significant decline to reach zero. After that, a consistent upward trend began to be seen from 2018 with only 8 documents until reaching its peak in 2021 with a total of more than 31 documents.

After reaching its peak in 2021, the number of documents began to decline in 2022, although it is still relatively high at around 20 documents. In 2023, there will be a slight increase compared to the previous year, which was 23 documents, but in 2024 the number of documents will again experience a significant decrease of only 14 documents. This graph indicates a trend of increasing interest in research related to Big Data and Smart Governance in recent years, especially during the period 2020-2021, which may be influenced by technological advances and increased attention to smart governance. However, the downward trend after 2021 suggests a possible saturation or shift in research focus in another direction.


Source: Scopus Database, 2024

Gambar 2. Documents by Authors

Figure 2 shows a comparison of the number of documents published by up to the top 15 authors on the topic of Big Data and Smart Governance at Scopus. The authors with the highest number of documents are Allam, Z. and Bibri, S.E., each publishing nearly 5 documents. Both seem to be the most

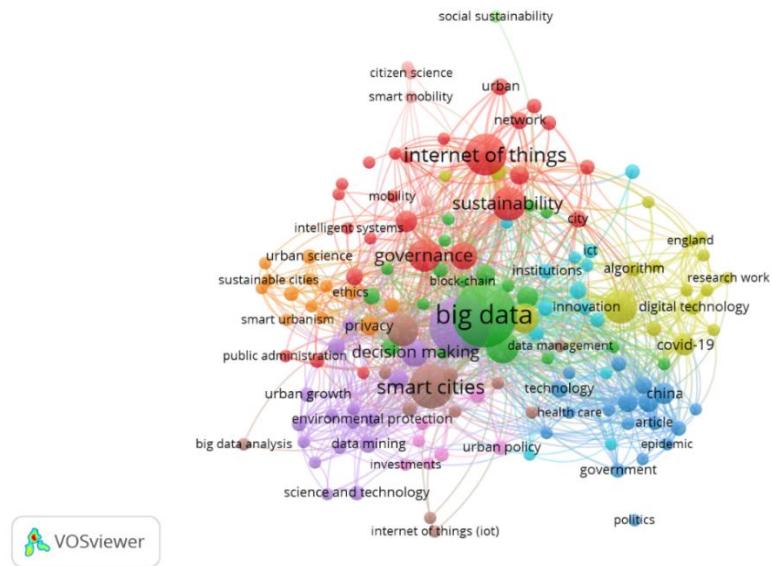
prolific authors on this topic, showing significant contributions to research in the field of Big Data and Smart Governance.

Other authors such as Nica, E. are in third place with about 3 documents, followed by several other authors such as Kitchin, R., Kliestik, T., Lăzăroiu, G., and Polak, M. who each publish between 2 and 2.5 documents. These authors point to an important role in the development of literature related to this field. This graph illustrates the concentration of research contributions among several key authors, where the top two authors show higher research output compared to other authors.

Source: Scopus Database, 2024
 Gambar 3. Documents by Subject Area

This pie diagram illustrates the distribution of documents by subject field on the Scopus platform. Social Sciences dominate with the largest contribution, which is 27.8% of the total documents. It was followed by Computer Science with 17.0%, and Arts and Humanities (Arts and Humanities) which contributed 9.7%. Engineering and Environmental Science accounted for 9.0% and 6.3% of the total documents, respectively.

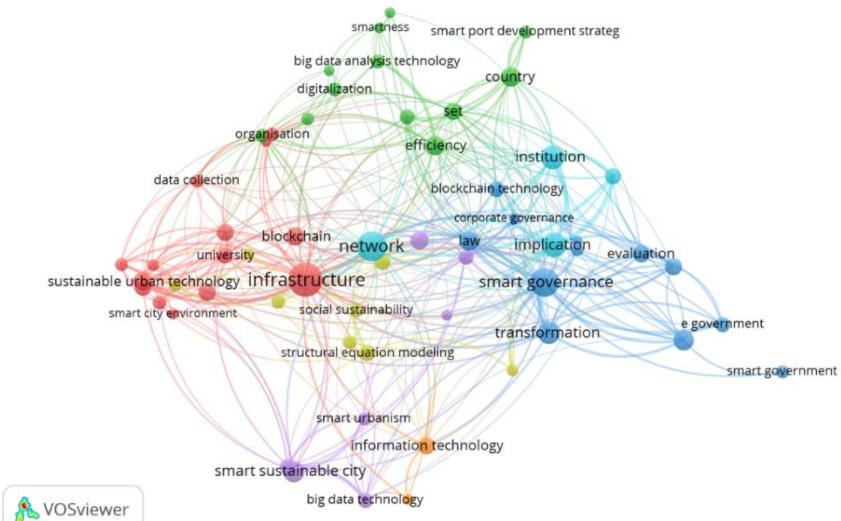
Other fields such as Decision Sciences, Business and Management, Energy, Medicine, and Mathematics contributed a smaller percentage, between 2.4% and 5.6%, respectively. The rest, 10.1%, fall into the "other" category, which includes a variety of disciplines that are more diverse but do not dominate significantly compared to the main fields already mentioned.



Source: Data Processing using VOSviewer, 2024
 Figure 4. Visualization using VosViewer by co-authorship

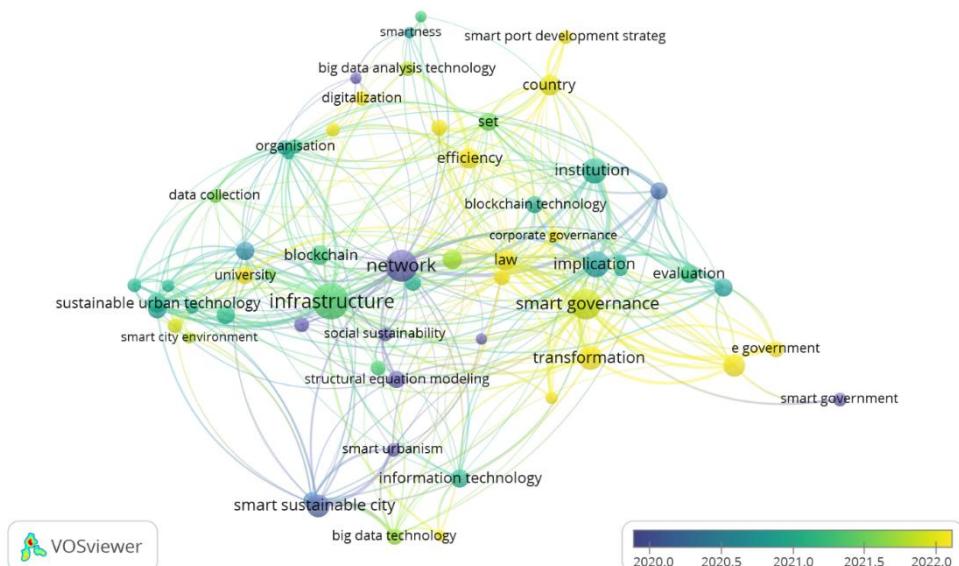
This image is a visualization of a co-authorship network that displays the relationships between authors in scientific publications. Each node (dot) represents a single author, while the line connecting the nodes indicates collaboration between authors. Node size indicates the intensity of author involvement in the collaboration, where larger nodes indicate authors with more collaboration.

There are several clusters marked with different colors, indicating the presence of a specific collaboration group. For example, the red cluster of authors such as Nica Elvira, Popescu Gheorghe H., and Poliak Milos suggests they have a close network of collaborations. The blue and green clusters also show a similar pattern of collaboration, where authors such as Vrbka Jaromir and Muhammad Tegar Satriatama¹, Hardianti¹, Achmad Nurmandi², Herman Lawelai³, Aulia Nur Kasiwi² | 175


Kliestik Tomas have an important role in connecting the various authors on the network. This visualization helps in understanding the relationships and key roles of authors in a particular research ecosystem.

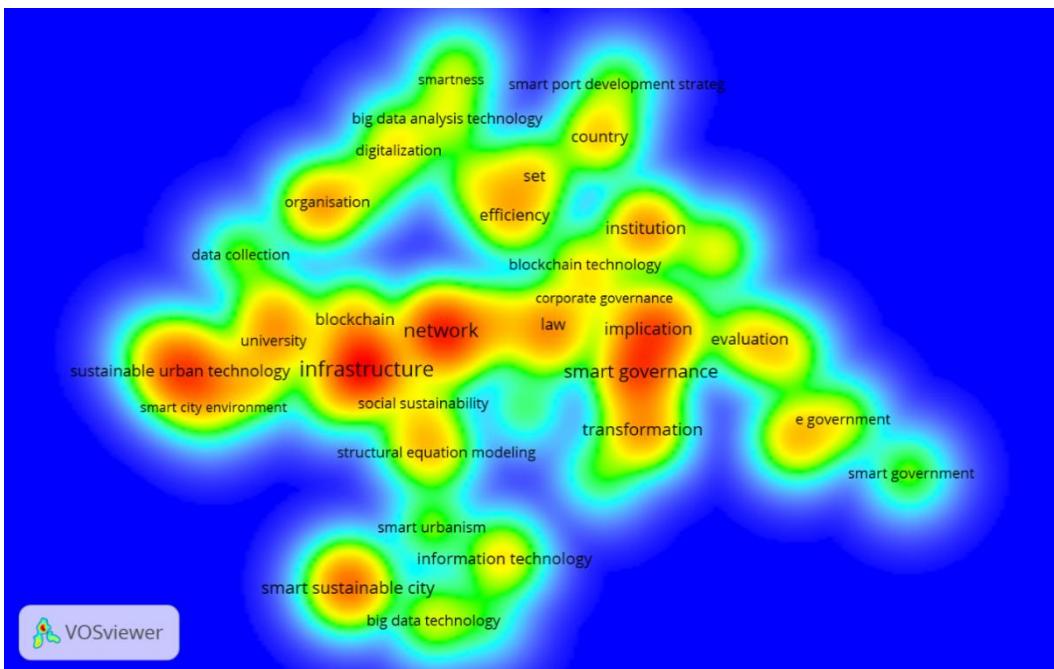
Source: Data Processing using VOSviewer, 2024
 Figure 5. Visualization using VosViewer by co-occurrence

Figure 5 shows a visualization of the co-occurrence network of the keywords in the study. Each node (dot) represents one keyword, and the size of the node indicates how often that keyword appears. The line connecting the nodes reflects the interconnectedness or co-emergence of two keywords in the publication. The thicker the line, the more often those keywords appear together.


The most dominant keywords are big data, governance, sustainability, and the internet of things, which have larger node sizes and more connectivity with other keywords. This suggests that these topics are the main focus of the study. In addition, there are several color clusters that indicate interrelated research theme groups, such as smart cities, decision making, privacy, and innovation. This visualization helps to understand research trends and the relationships between concepts being studied by the scientific community in this field (32).

Source: Data Processing using VOSviewer, 2024
 Figure 6. Visualization using VosViewer network visualization

Figure 6 shows a map of the network of relationships between keywords in scientific publications, focusing on concepts such as Public-Private Partnership (PPP), GovernmentProject, and Innovation. Each node represents a keyword, while the line connecting the nodes indicates the relationship or linkage between those keywords in a published study.


Specifically, the keywords Government, PPP, and Collaborative Governance (located on the left side) are closely linked, suggesting that these topics are often discussed together in the context of collaborative research between the government and the private sector. On the right side, there are keyword groups such as Project, Performance, Quality, and Data, which indicates that much of the research focuses on how project performance and quality are assessed, as well as how data is used to support the innovation process. This combination of relationships illustrates the interconnection between public governance and project management across various studies.

Source: Data Processing using VOSviewer, 2024
Figure 7. Visualization using VosViewer overlay visualization

Figure 7 shows a bibliographic visualization map with the main themes of smart governance, infrastructure, network, and smart sustainable city. The colors on the nodes and lines show the temporal evolution of these topics in the span of 2020 to 2022, as seen from the legend at the bottom of the image. Node networks, infrastructure, and smart governance are central to this map, indicating that these concepts are interconnected and often discussed in the same context. On the other hand, keywords such as smart sustainable city, blockchain, and big data technology also appear in this map, showing the relevance of advanced technologies and urban sustainability in the latest research.

Blue to green indicates that some topics, such as infrastructure and networks, were more discussed in 2020, while topics such as smart governance, institutions, and evaluation tend to emerge in newer research, especially after 2021, with the nodes in yellow. This illustrates the shift in research focus from infrastructure and technology towards the implementation of smart governance and transformational innovation.

Source: Data Processing using VOSviewer, 2024

Figure 8. Visualization using VosViewer density visualization

The topic density map in this bibliographic network illustrates the distribution of the intensity of the emergence of research terms that are often used in the literature. The red color indicates the areas with the highest density, which means that terms in these regions, such as infrastructure, network, smart governance, and transformation, appear very often and take center stage in research. These terms seem to be the main focus in academic or scientific discussions related to the topic. The yellow and green colors represent medium density, where terms such as blockchain technology, implication, and evaluation are still frequently discussed but with a lower intensity. On the other hand, the color blue signifies low density, indicating that terms such as e-government and smart government are discussed less frequently compared to other major terms. Overall, this map provides an overview of where the greatest concerns in research lie, as well as topics that are more frequent or rarely discussed in the literature analyzed.

CONCLUSION

The conclusion of this article emphasizes that the integration of Big Data into Smart Governance offers significant opportunities to strengthen government performance in achieving sustainable governance. First, Big Data supports the implementation of Smart Governance by enhancing efficiency, transparency, and accountability through evidence-based decision-making, which ultimately improves the quality of public services and responsiveness to citizens' needs. Second, while the use of Big Data presents opportunities for innovation, it also poses challenges related to privacy protection, data security, and the adequacy of technological infrastructure, which require strategic solutions and consistent regulatory frameworks. Third, Smart Governance plays a crucial role in promoting sustainable development, as Big Data contributes to environmental monitoring, natural resource management, and the design of policies that align with long-term economic, social, and ecological objectives. Finally, this article recommends that governments and stakeholders develop integrated policies, invest in digital infrastructure, and strengthen institutional capacity to optimize the potential

of Big Data. Such efforts will not only enhance governance effectiveness but also provide long-term benefits for equitable and sustainable development.

However, the success of this implementation depends on the government's ability to overcome challenges such as technological infrastructure, data security, and managing the complexity of big data processing. Therefore, investment in competent human resources in the field of technology and close collaboration between the government, the private sector, and academia are essential to achieve optimal results. In the future, further research and inclusive public policy development are needed to support the application of Big Data more effectively in Smart Governance. With the right strategies and regulations, Big Data can be a key instrument to realize a more sustainable, transparent, and responsive government.

ACKNOWLEDGEMENT

The author would like to express his deep gratitude to the Jusuf Kalla School of Government, University of Muhammadiyah Yogyakarta for the extraordinary facilities provided during the internship. Thanks to the esteemed tutors whose invaluable guidance and support were instrumental in completing this manuscript. Their contributions are highly valued and important to these academic endeavors.

REFERENCE

1. Hillebrand K, Hornuf L, Müller B, Vrankar D. The social dilemma of big data: Donating personal data to promote social welfare. *Inf Organ* [Internet]. 2023; 33(1). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147553782&doi=10.1016%2Fj.infoandorg.2023.100452&partnerID=40&md5=fcac2ff37b7d7f2b12ac8707c358b9da>
2. Hossin MA, Du J, Mu L, Asante IO. Big Data-Driven Public Policy Decisions: Transformation Toward Smart Governance. *SAGE Open* [Internet]. 2023; 13(4). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85179322045&doi=10.1177%2F21582440231215123&partnerID=40&md5=c621286f7d17be4519cc699d1794986a>
3. Mulligan K. Computationally networked urbanism and advanced sustainability analytics in internet of things-enabled smart city governance. *Geopolit Hist Int Relations* [Internet]. 2021; 13(2):121–34. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119700973&doi=10.22381%2FGHIR13220219&partnerID=40&md5=1ff4f3602b60d45699469c9a1ae939bc>
4. Kandt J, Batty M. Smart cities, big data and urban policy: Towards urban analytics for the long run. *Cities* [Internet]. 2021;109. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096525315&doi=10.1016%2Fj.cities.2020.102992&partnerID=40&md5=53ba678d3cb2ce2006aecd93aa93672d>
5. Nica E. Urban big data analytics and sustainable governance networks in integrated smart city planning and management. *Geopolit Hist Int Relations* [Internet]. 2021; 13(2):93–106. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119661353&doi=10.22381%2FGHIR13220217&partnerID=40&md5=903b803ce0224766a0aa45c24cdbfffb2>
6. Chien H, Hori K, Saito O. Urban commons in the techno-economic paradigm shift: An information and communication technology-enabled climate-resilient solutions review. *Environ Plan B Urban Anal City Sci* [Internet]. 2022; 49(5):1389–405. Available from: Muhammad Tegar Satriatama¹, Hardianti¹, Achmad Nurmandi², Herman Lawelai³, Aulia Nur Kasiwi² | **179**

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124579307&doi=10.1177%2F23998083211066324&partnerID=40&md5=47b013d9c479ee22a17e4891fa46feeb>

7. Gandy OH, Nemorin S. Toward a political economy of nudge: smart city variations. *Inf Commun Soc* [Internet]. 2019; 22(14):2112–26. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047664348&doi=10.1080%2F1369118X.2018.1477969&partnerID=40&md5=37fba9d913bc177162de31a53aa51ee4>

8. Evans V, Horak J. Sustainable urban governance networks, data-driven internet of things systems, and wireless sensor-based applications in smart city logistics. *Geopolit Hist Int Relations* [Internet]. 2021; 13(2):65–78. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119681349&doi=10.22381%2FGHIR13220215&partnerID=40&md5=b727a66b369ff43553fe7b204804198>

9. Sucupira Furtado L, da Silva TLC, Ferreira MGF, de Macedo JAF, de Melo Lima Cavalcanti Moreira JK. A framework for Digital Transformation towards Smart Governance: using big data tools to target SDGs in Ceará, Brazil. *J Urban Manag* [Internet]. 2023; 12(1):74–87. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148367076&doi=10.1016%2Fj.jum.2023.01.003&partnerID=40&md5=04d323c90bd623e70f0564c9318e32f3>

10. Hong A, Baker L, Prieto Curiel R, Duminy J, Buswala B, Guan CH, et al. Reconciling big data and thick data to advance the new urban science and smart city governance. *J Urban Aff* [Internet]. 2023; 45(10):1737–61. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126057117&doi=10.1080%2F07352166.2021.2021085&partnerID=40&md5=0d9bcb7246c20adffdb2cd643f253916>

11. Ng LHX, Lim ACM, Lim AXW, Taeihagh A. Digital Ethics for Biometric Applications in a Smart City. *Digit Gov Res Pract* [Internet]. 2023; 4(4). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181746153&doi=10.1145%2F3630261&partnerID=40&md5=766998421f5b5650dfa069f77a6282bf>

12. Wade K, Vrbka J, Zhuravleva NA, Machova V. Sustainable governance networks and urban internet of things systems in big data-driven smart cities. *Geopolit Hist Int Relations* [Internet]. 2021; 13(1):64–74. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112487900&doi=10.22381%2FGHIR13120216&partnerID=40&md5=c07ed4d0b9595d64208b805b054423f3>

13. Calzada I, Almirall E. Data ecosystems for protecting European citizens' digital rights. *Transform Gov People, Process Policy* [Internet]. 2020; 14(2):133–47. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082660631&doi=10.1108%2FTG-03-2020-0047&partnerID=40&md5=b7b71ad2cd3bb2686ba1bdad724fe6c3>

14. Lin SC, Chang HK, Chung YF. Exploring the Impact of Different Port Governances on Smart Port Development Strategy in Taiwan and Spain. *Sustain* [Internet]. 2022; 14(15). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137203998&doi=10.3390%2Fsu14159158&partnerID=40&md5=d4711f693763286d7a093fcf62073f08>

15. Burke S, Zvarikova K. Urban internet of things systems and data monitoring algorithms in smart and environmentally sustainable cities. *Geopolit Hist Int Relations* [Internet]. 2021; 13(2):135–48. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119681349&doi=10.22381%2FGHIR13220215&partnerID=40&md5=b727a66b369ff43553fe7b204804198>

85119682256&doi=10.22381%2FGHIR132202110&partnerID=40&md5=01e0182485a24d82ce7f63fc54fe2b95

16. Sudmant A, Viguié V, Lepetit Q, Oates L, Datey A, Gouldson A, et al. Fair weather forecasting? The shortcomings of big data for sustainable development, a case study from Hubballi-Dharwad, India. *Sustain Dev* [Internet]. 2021; 29(6):1237–48. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107913619&doi=10.1002%2Fsd.2221&partnerID=40&md5=3b4a27607ac7ef4b0c1cc105747c5da3>

17. Ordóñez-Martínez D, Seguí-Pons JM, Ruiz-Pérez M. Conceptual Framework and Prospective Analysis of EU Tourism Data Spaces. *Sustain* [Internet]. 2024; 16(1). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181958088&doi=10.3390%2Fsu16010371&partnerID=40&md5=2b327f2aee92979cf20c32c4a5677367>

18. Große-Bley J, Kostka G. Big Data Dreams and Reality in Shenzhen: An Investigation of Smart City Implementation in China. *Big Data Soc* [Internet]. 2021; 8(2). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85116228313&doi=10.1177%2F20539517211045171&partnerID=40&md5=3af5e7a2b6f9b4ccc f37a320c9fcfc7d>

19. Löfgren K, Webster CWR. The value of Big Data in government: The case of ‘smart cities.’ *Big Data Soc* [Internet]. 2020; 7(1). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084699438&doi=10.1177%2F2053951720912775&partnerID=40&md5=d994a6c120922fb6a91ed35c167a321d>

20. Ferreri M, Sanyal R. Platform economies and urban planning: Airbnb and regulated deregulation in London. *Urban Stud* [Internet]. 2018; 55(15):3353–68. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85043375157&doi=10.1177%2F0042098017751982&partnerID=40&md5=0969eb7c9b2fb9e26914c3c54d49f5e0>

21. Matheus R, Janssen M, Maheshwari D. Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. *Gov Inf Q* [Internet]. 2020; 37(3). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044786511&doi=10.1016%2Fj.giq.2018.01.006&partnerID=40&md5=69ea19c075506610ccfd9e35f11a12f8>

22. Kourtit K. City intelligence for enhancing urban performance value: a conceptual study on data decomposition in smart cities. *Asia-Pacific J Reg Sci* [Internet]. 2021; 5(1):191–222. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101210735&doi=10.1007%2Fs41685-021-00193-9&partnerID=40&md5=51b8b5e84914e38b96a29e4e57b29f74>

23. Yang J, Zheng C, Liu H. Digital Transformation and Rule of Law Based on Peak CO₂ Emissions and Carbon Neutrality. *Sustain* [Internet]. 2022; 14(12). Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132885152&doi=10.3390%2Fsu14127487&partnerID=40&md5=ec1b57661e48ff9fc9c43e121f48d20d>

24. Grayson J. Big data analytics and sustainable urbanism in internet of things-enabled smart governance. *Geopolit Hist Int Relations* [Internet]. 2020; 12(2):23–9. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094572435&doi=10.22381%2FGHIR12220203&partnerID=40&md5=c8b25bded1230cf8ca5>

78fa03a877705

25. Lawelai H. Understanding Digital Governance in Smart Cities: In-Depth Study Utilizing VOSviewer and CiteSpace. E3S Web Conf. 2023; 440:1–11.
26. Papagianneas S. Smart Governance in China's Political-Legal System. China Law Soc Rev [Internet]. 2021; 6(2):146–80. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85162810283&doi=10.1163%2F25427466-06020002&partnerID=40&md5=42fcd7a423df53154666a5b5409862ab>
27. Allam Z, Tegally H, Thondoo M. Redefining the use of big data in urban health for increased liveability in smart cities. Smart Cities [Internet]. 2019; 2(2):259–68. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083626852&doi=10.3390%2Fsmartcities2020017&partnerID=40&md5=42c965c424ccdf2689e51c61b4688607>
28. Prakoso V, Lawelai H, Nurmandi A, Purnomo EP, Jovita H. Research Trends, Topics, and Insights on Network Security and the Internet of Things in Smart Cities. J Stud Ilmu Pemerintah [Internet]. 2023; 4(2):191–206. Available from: <http://www.jurnal-umbuton.ac.id/index.php/jsip/article/view/4707>
29. Lim C, Kim KJ, Maglio PP. Smart cities with big data: Reference models, challenges, and considerations. Cities [Internet]. 2018; 82:86–99. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047406958&doi=10.1016%2Fj.cities.2018.04.011&partnerID=40&md5=35057ff305ca15d0fd7e48b079fa2600>
30. Leszczynski A. Speculative futures: Cities, data, and governance beyond smart urbanism. Environ Plan A [Internet]. 2016; 48(9):1691–708. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-84981285624&doi=10.1177%2F0308518X16651445&partnerID=40&md5=2478c3196318d9f3c23dcd775aff7d3>
31. Mitchell T, Krulicky T. Big data-driven urban geopolitics, interconnected sensor networks, and spatial cognition algorithms in smart city software systems. Geopolit Hist Int Relations [Internet]. 2021; 13(2):9–22. Available from: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119669796&doi=10.22381%2FGHIR13220211&partnerID=40&md5=b68bc1ab13d47638eb2c4fe7db500028>
32. Lawelai H, Nurmandi A. Analyzing Smart Cities Governance Publications Using CiteSpace: Integration of Organizational Strategy and Human Resources for Sustainable Urban Development [Internet]. Vol. 1957 CCIS, Communications in Computer and Information Science. Springer Nature Switzerland; 2024. 41–48 p. Available from: http://dx.doi.org/10.1007/978-3-031-49212-9_6